Knowing the correct distribution of senses within a corpus can potentially boost the performance of Word Sense Disambiguation (WSD) systems by many points. We present two fully automatic and language-independent methods for computing the distribution of senses given a raw corpus of sentences. Intrinsic and extrinsic evaluations show that our methods outperform the current state of the art in sense distribution learning and the strongest baselines for the most frequent sense in multiple languages and on domain-specific test sets. Our sense distributions are available at http://trainomatic.org.

Two knowledge-based methods for High-Performance Sense Distribution Learning / Pasini, Tommaso; Navigli, Roberto. - ELETTRONICO. - (2018), pp. 5374-5381. (Intervento presentato al convegno AAAI tenutosi a New Orleans, Luissiana, USA).

Two knowledge-based methods for High-Performance Sense Distribution Learning

Tommaso Pasini
;
Roberto Navigli
2018

Abstract

Knowing the correct distribution of senses within a corpus can potentially boost the performance of Word Sense Disambiguation (WSD) systems by many points. We present two fully automatic and language-independent methods for computing the distribution of senses given a raw corpus of sentences. Intrinsic and extrinsic evaluations show that our methods outperform the current state of the art in sense distribution learning and the strongest baselines for the most frequent sense in multiple languages and on domain-specific test sets. Our sense distributions are available at http://trainomatic.org.
2018
AAAI
Word Sense Distribution, Word Sense Disambiguation, Lexical Semantics
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Two knowledge-based methods for High-Performance Sense Distribution Learning / Pasini, Tommaso; Navigli, Roberto. - ELETTRONICO. - (2018), pp. 5374-5381. (Intervento presentato al convegno AAAI tenutosi a New Orleans, Luissiana, USA).
File allegati a questo prodotto
File Dimensione Formato  
Navigli_Two_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 486.3 kB
Formato Adobe PDF
486.3 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1023443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 11
social impact